Teori Bahasa dan Otomata

Teori Bahasa

  • Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan pemroses naskah (text processor).
  • Bahasa formal adalah kumpulan kalimat. Semua kalimat dalam sebuah bahasa dibangkitkan oleh sebuah tata bahasa (grammar) yang sama.
  • Sebuah bahasa formal bisa dibangkitkan oleh dua atau lebih tata bahasa berbeda.
  • Dikatakan bahasa formal karena grammar diciptakan mendahului pembangkitan setiap kalimatnya.
  • Bahasa Natural/manusia bersifat sebaliknya; grammar diciptakan untuk meresmikan kata-kata yang hidup di masyarakat. Dalam pembicaraan selanjutnya ‘bahasa formal’ akan disebut ‘bahasa’ saja.

Otomata (Automata)

  • Otomata adalah mesin abstrak yang dapat mengenali (recognize), menerima (accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu.
  • Unsur pembentuk tata bahasa
a)      Terminal merupakan simbol dasar dari suatu rangkaian yang terbentuk
b)      Non – terminal adalah variable sintaktik yang menyatakan kumpulan rangkaian yang   membantu bahasa yang dibentuk oleh tata bahasanya yang memiliki produksi
c)       Simbol awal adalah simbol yang paling pertama kita tuliskan
d)      Produksi, menentukan perilaku dimana terminal dan non – terminal dapat digabungkan untuk membentuk rangkaian

Beberapa Pengertian Dasar :

· Simbol adalah sebuah entitas abstrak (seperti halnya pengertian titik dalam geometri). Sebuah huruf atau sebuah angka adalah contoh simbol.
· String adalah deretan terbatas (finite) simbol-simbol. Sebagai contoh, jika ab, dan adalah tiga buah simbol maka abcb adalah sebuah string yang dibangun dari ketiga simbol tersebut.
· Jika adalah sebuah string maka panjang string dinyatakan sebagai ïwï dan didefinisikan sebagai cacahan (banyaknya) simbol yang menyusun string tersebut. Sebagai contoh, jika abcb maka ïwï= 4.
· String hampa adalah sebuah string dengan nol buah simbol. String hampa dinyatakan dengan simbol e (atau ^) sehingga ïeï= 0. String hampa dapat dipandang sebagai simbol hampa karena keduanya tersusun dari nol buah simbol.
· Alfabet adalah hinpunan hingga (finite set) simbol-simbol

Operasi Dasar String

Diberikan dua string : x = abc, dan y = 123
· Prefik string w adalah string yang dihasilkan dari string w dengan menghilangkannol atau lebih simbol-simbol paling belakang dari string w tersebut.
Contoh : abcaba, dan e adalah semua Prefix(x)
· ProperPrefix string adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling belakang dari string wtersebut.
Contoh : aba, dan e adalah semua ProperPrefix(x)
· Postfix (atau Sufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dari string w tersebut.
Contoh : abcbcc, dan e adalah semua Postfix(x)
· ProperPostfix (atau PoperSufix) string w adalah string yang dihasilkan dari stringw dengan menghilangkan satu atau lebih simbol-simbol paling depan dari string wtersebut.
Contoh : bcc, dan e adalah semua ProperPostfix(x)
· Head string adalah simbol paling depan dari string w.
Contoh : a adalah Head(x)
· Tail string adalah string yang dihasilkan dari string w dengan menghilangkan simbol paling depan dari string tersebut.
Contoh : bc adalah Tail(x)
· Substring string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dan/atau simbol-simbol paling belakang dari string w tersebut.
Contoh : abcabbcab, c, dan e adalah semua Substring(x)
· ProperSubstring string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dan/atau simbol-simbol paling belakang dari string w tersebut.
Contoh : abbcab, c, dan e adalah semua Substring(x)
· Subsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol dari string w tersebut.
Contoh : abc, abbcacab, c, dan e adalah semua Subsequence(x)
· ProperSubsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol dari string w tersebut.
Contoh : abbcacab, c, dan e adalah semua Subsequence(x)
· Concatenation adalah penyambungan dua buah string. Operator concatenation adalah concate atau tanpa lambang apapun.
Contoh : concate(xy) = xy abc123
· Alternation adalah pilihan satu di antara dua buah string. Operator alternation adalah alternate atau ½.
Contoh : alternate(xy) = x½abc atau 123
· Kleene Closure : x* = e½x½xx½xxx½… = e½x½x½x½…
· Positive Closure : x = x½xx½xxx½… = x½x½x½…

Beberapa Sifat Operasi

· Tidak selalu berlaku : x = Prefix(x)Postfix(x)
· Selalu berlaku : x = Head(x)Tail(x)
· Tidak selalu berlaku : Prefix(x) = Postfix(x) atau Prefix(x) ¹ Postfix(x)
· Selalu berlaku : ProperPrefix(x) ¹ ProperPostfix(x)
· Selalu berlaku : Head(x) ¹ Tail(x)
· Setiap Prefix(x), ProperPrefix(x), Postfix(x), ProperPostfix(x), Head(x), dan Tail(x) adalah Substring(x), tetapi tidak sebaliknya
· Setiap Substring(x) adalah Subsequence(x), tetapi tidak sebaliknya
· Dua sifat aljabar concatenation :
¨ Operasi concatenation bersifat asosiatif : x(yz) = (xy)z
¨ Elemen identitas operasi concatenation adalah e : exe = x
· Tiga sifat aljabar alternation :
¨ Operasi alternation bersifat komutatif : x½y = y½x
¨ Operasi alternation bersifat asosiatif : x½(y½z) = (x½yz
¨ Elemen identitas operasi alternation adalah dirinya sendiri : x½x = x
· Sifat distributif concatenation terhadap alternation : x (y½z) = xy½xz
· Beberapa kesamaan :
¨ Kesamaan ke-1 : (x*)* = x*
¨ Kesamaan ke-2 : e½x = x½e = x*
¨ Kesamaan ke-3 : (x½y)* = e½x½y½xx½yy½xy½yx½… = semua string yang merupakan concatenation dari nol atau lebih x, y, atau keduanya.


GRAMMAR DAN BAHASA

Konsep Dasar

• Anggota alfabet dinamakan simbol terminal.
• Kalimat adalah deretan hingga simbol-simbol terminal.
• Bahasa adalah himpunan kalimat-kalimat. Anggota bahasa bisa tak hingga kalimat.
• Simbol-simbol berikut adalah simbol terminal :
  • huruf kecil, misalnya : a, b, c
  • simbol operator, misalnya : +, , dan *
  • simbol tanda baca, misalnya : (, ), dan ;
  • simbol tanda baca, misalnya : (, ), dan ;
  • string yang tercetak tebal, misalnya : ifthen, dan else.

Simbol berikut termasuk dalam terminal
1. Huruf kecil alfabet (a, b, c, ....)
2. Simbol operator (+, -, *, /)
3. Simbol tanda baca
4. Digit (0, 1, 2, .....)
5. If, Then, Else

Simbol berikut termasuk non – terminal
1. Huruf besar alfabet (A, B, C, ....)
2. Simbol awal (S)
3. Jika A → α1, A → α2,.........., A → αk

• Huruf yunani melambangkan string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya, misalnya : α,β, dan ε
• Sebuah produksi dilambangkan sebagai α --> β, artinya : dalam sebuah derivasi dapat dilakukan penggantian simbol α dengan simbol β.
• Derivasi adalah proses pembentukan sebuah kalimat atau sentensial. Sebuah derivasi dilambangkan sebagai : α ==> β.
• Sentensial adalah string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya.
• Kalimat adalah string yang tersusun atas simbol-simbol terminal. Kalimat adalah merupakan sentensial, sebaliknya belum tentu.. Grammar :
Grammar G didefinisikan sebagai pasangan 4 tuple : Vt , Vn , S, dan P, dan dituliskan sebagai G(Vt , Vn , S, P), dimana:
Vt : himpunan simbol-simbol terminal (alfabet) = kamus Vn : himpunan simbol-simbol non terminal S C V : simbol awal (atau simbol start) P : himpunan produksi
Contoh :
1. G1 : VT = {I, want, need, You}, V = {S,A,B,C}, P = {S --> ABC, A--> I, B--> want | need, C--> You}
S --> ABC

Grammar :

Grammar G didefinisikan sebagai pasangan 4 tuple : Vt , Vn , S, dan P, dan dituliskan sebagai G(Vt , Vn , S, P), dimana:
Vt : himpunan simbol-simbol terminal (alfabet) = kamus 
Vn : himpunan simbol-simbol non terminal 
C V : simbol awal (atau simbol start) 
P : himpunan produksi


Contoh :
1. G1 : VT = {I, Love, Miss, You}, V = {S,A,B,C}, 
P = {S ® ABC, A® I, B® Love | Miss, C® You}
S Þ ABC
Þ IloveYou
L(G1)={IloveYou, IMissYou}
2. . G2 : VT = {a}, V = {S}, P = {S ® aS½a} 
S Þ aS
Þ aaS
Þ aaa L(G2) ={a½ n ≥ 1}
L(G2)={a, aa, aaa, aaaa,…}

Klasifikasi Chomsky

Berdasarkan komposisi bentuk ruas kiri dan ruas kanan produksinya (a ® b), Noam Chomsky mengklasifikasikan 4 tipe grammar :
1. Grammar tipe ke-0 : Unrestricted Grammar (UG)
Ciri : a, b Î (V½V)*, ïaï> 0
2. Grammar tipe ke-1 : Context Sensitive Grammar (CSG)
Ciri : a, b Î (V½V) *, 0 < ïaï £ ïbï
3. Grammar tipe ke-2 : Context Free Grammar (CFG)
Ciri : a Î V, b Î (V½V)*
4. Grammar tipe ke-3 : Regular Grammar (RG)
Ciri : a Î V, b Î {V, VV} atau a Î V, b Î {V, VV}
Tipe sebuah grammar (atau bahasa) ditentukan dengan aturan sebagai berikut:

A language is said to be type-i (i = 0, 1, 2, 3) language if it can be specified by a type-i grammar but can’t be specified any type-(i+1) grammar.

Contoh Analisa Penentuan Type Grammar

1. Grammar G dengan P = {S ® aB, B ® bB, B ® b}. 
Ruas kiri semua produksinya terdiri dari sebuah V maka G kemungkinan tipe CFG atau RG. Selanjutnya karena semua ruas kanannya terdiri dari sebuah V atau string VV maka G adalah RG(3).
2. Grammar G dengan P = {S ® Ba, B ® Bb, B ® b}. 
Ruas kiri semua produksinya terdiri dari sebuah V maka G kemungkinan tipe CFG atau RG. Selanjutnya karena semua ruas kanannya terdiri dari sebuah V atau string VV maka G adalah RG(3).
3. Grammar G dengan P = {S ® Ba, B ® bB, B ® b}. 
Ruas kiri semua produksinya terdiri dari sebuah V maka G kemungkinan tipe CFG atau RG. Selanjutnya karena ruas kanannya mengandung string VV (yaitu bB) dan juga string VV (Ba) maka G bukan RG, dengan kata lain G adalah CFG(2).
4. Grammar G dengan P = {S ® aAb, B ® aB}.
Ruas kiri semua produksinya terdiri dari sebuah V maka G kemungkinan tipe CFG atau RG. Selanjutnya karena ruas kanannya mengandung string yang panjangnya lebih dari 2 (yaitu aAb) maka G bukan RG, dengan kata lain G adalah CFG.
5. Grammar G dengan P = {S ® aA, S ® aB, aAb ® aBCb}. 
Ruas kirinya mengandung string yang panjangnya lebih dari 1 (yaitu aAb) maka G kemungkinan tipe CSG atau UG. Selanjutnya karena semua ruas kirinya lebih pendek atau sama dengan ruas kananya maka G adalah CSG. 
6. Grammar G dengan P = {aS ® ab, SAc ® bc}.
Ruas kirinya mengandung string yang panjangnya lebih dari 1 maka G kemungkinan tipe CSG atau UG. Selanjutnya karena terdapat ruas kirinya yang lebih panjang daripada ruas kananya (yaitu SAc) maka G adalah UG.

Derivasi Kalimat dan Penentuan Bahasa

Tentukan bahasa dari masing-masing gramar berikut :
1. G dengan P = {1. S ® aAa, 2. A ® aAa, 3. A ® b}.
Jawab :
Derivasi kalimat terpendek : Derivasi kalimat umum :
S Þ aAa (1) S Þ aAa (1)
Þ aba (3) Þ aaAaa (2)
¼
Þ aAa (2)
Þ aba (3)
Dari pola kedua kalimat disimpulkan : L(G) = { aba½ n ³ 1}
2. G dengan 
P = {1. S ® aS, 2. S ® aB, 3. B ® bC, 4. C ® aC, 5. C ® a}.
Jawab :
Derivasi kalimat terpendek : Derivasi kalimat umum :
S Þ aB (2) S Þ aS (1)
Þ abC (3) ¼
Þ aba (5) Þ aS (1) 
Þ aB (2)
Þ abC (3)
Þ abaC (4)
¼
Þ abaC (4)
Þ aba (5)
Dari pola kedua kalimat disimpulkan : L(G)={aba½n ³1, m³1}
3. G dengan 
P = {1. S ® aSBC, 2. S ® abC, 3. bB ® bb, 
4. bC ® bc, 5. CB ® BC, 6. cC ® cc}.
Jawab :
Derivasi kalimat terpendek 1: Derivasi kalimat terpendek 3 :
S Þ abC (2) S Þ aSBC (1)
Þ abc (4) Þ aaSBCBC (1)
Derivasi kalimat terpendek 2 : Þ aaabCBCBC (2)
S Þ aSBC (1) Þ aaabBCCBC (5)
Þ aabCBC (2) Þ aaabBCBCC (5)
Þ aabBCC (5) aabcBC (4) Þ aaabBBCCC (5)
Þ aabbCC (3) Þ aaabbBCCC (3)
Þ aabbcC (4) Þ aaabbbCCC (3)
Þ aabbcc (6) Þ aaabbbcCC (4)
Þ aaabbbccC (6)
Þ aaabbbccc (6)
Dari pola ketiga kalimat disimpulkan : L (G) = { abc½ n ³ 1}

Menentukan Grammar Sebuah Bahasa

1. Tentukan sebuah gramar regular untuk bahasa L = { a½ n ³ 1}
Jawab :
P(L) = {S ® aS½a}
2. Tentukan sebuah gramar bebas konteks untuk bahasa : 

L : himpunan bilangan bulat non negatif ganjil

Jawab :
Langkah kunci : digit terakhir bilangan harus ganjil. 
Vt={0,1,2,..9} 
Vn ={S, G,J}
P={SàHT|JT|J; TàGT|JT|J; Hà2|4|6|8; Gà0|2|4|6|8;Jà1|3|5|7|9}
P={SàGS|JS|J; Gà0|2|4|6|8;Jà1|3|5|7|9}
Buat dua buah himpunan bilangan terpisah : genap (G) dan ganjil (J)
P(L) = {S ® J½GS½JS, G ® 0½2½4½6½8, J ® 1½3½5½7½9}
3. Tentukan sebuah gramar bebas konteks untuk bahasa :

B. L = himpunan semua identifier yang sah menurut bahasa pemrograman Pascal dengan batasan : terdiri dari simbol huruf kecil dan angka, panjang identifier boleh lebih dari 8 karakter

Jawab :
Langkah kunci : karakter pertama identifier harus huruf. 
Buat dua himpunan bilangan terpisah : huruf (H) dan angka (A)
SàHT|H;TàHT|AT|H|A; Hàa|..|z; Aà0|..|9
P(L) = {S ® H½HT, T ® AT½HT½H½A, 
H ® a½b½c½…, A ® 0½1½2½…}
4. Tentukan gramar bebas konteks untuk bahasa 
L(G) = {ab½n,m ³ 1, n ¹ m}
Jawab :
Langkah kunci : sulit untuk mendefinisikan L(G) secara langsung. Jalan keluarnya adalah dengan mengingat bahwa x ¹ y berarti x > y atau x < y.
L = LÈ L, L ={ab½n > m ³ 1}, L = {ab½1 £ n < m}.
P(L) = {A ® aA½aC, C ® aCb½ab}, Q(L) = {B ® Bb½Db, D® aDb½ab}
P(L) = {S® A½B, A ® aA½aC, C ® aCb½ab, B ® Bb½Db, D® aDb½ab}
5. Tentukan sebuah gramar bebas konteks untuk bahasa :
L = bilangan bulat non negatif genap. Jika bilangan tersebut terdiri dari dua digit atau lebih maka nol tidak boleh muncul sebagai digit pertama.
Jawab :
Langkah kunci : Digit terakhir bilangan harus genap. Digit pertama tidak boleh nol. Buat tiga himpunan terpisah : bilangan genap tanpa nol (G), bilangan genap dengan nol (N), serta bilangan ganjil (J).
P(L) = {S ® N½GA½JA, A ® N½NA½JA, G® 2½4½6½8, 
N® 0½2½4½6½8, J ® 1½3½5½7½9}

C. Mesin Pengenal Bahasa

Untuk setiap kelas bahasa Chomsky, terdapat sebuah mesin pengenal bahasa. Masing-masing mesin tersebut adalah :
Kelas BahasaMesin Pengenal Bahasa
Unrestricted Grammar (UG)Mesin Turing (Turing Machine), TM
Context Sensitive Grammar (CSG)Linear Bounded Automata, LBA
Context Free Gammar (CFG)Pushdown Automata, PDA
Regular Grammar, RGFinite State Automata, FSA
FINITE STATE AUTOMATA (FSA)
· FSA didefinisikan sebagai pasangan 5 tupel : (Q, ∑, δ, S, F).

Q : himpunan hingga state

∑ : himpunan hingga simbol input (alfabet)
δ : fungsi transisi, menggambarkan transisi state FSA akibat pembacaan simbol input.
Fungsi transisi ini biasanya diberikan dalam bentuk tabel.
S Î Q : state AWAL
F Ì Q : himpunan state AKHIR
Contoh : FSA untuk mengecek parity ganjil 
Q ={Gnp, Gjl} diagram transisi
∑ = {0,1} 
tabel transisi
δ01
GnpGnpGjl
GjlGjlGnp
S = Gnp, F = {Gjl}
· Ada dua jenis FSA : 
· Deterministic finite automata (DFA) 
· Non deterministik finite automata.(NFA)
- DFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tertentu.

δ : Q ´ ∑® Q

- NFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tak tentu.
δ : Q ´ ∑ ® 2Q
DFA :
Q = {q0, q1, q2} 
δ diberikan dalam tabel berikut :
∑= {a, b}δab
S = q0q0q0q1
F = {q0, q1}q1q0q2
q2q2q2


a b a
q0 q1 q2 b


a b
Kalimat yang diterima oleh DFA : a, b, aa, ab, ba, aba, bab, abab, baba
Kalimat yang dittolak oleh DFA : bb, abb, abba
DFA ini menerima semua kalimat yang tersusun dari simbol a dan b yang tidak mengandung substring bb.
Contoh :
Telusurilah, apakah kalimat-kalimat berikut diterima DFA di atas : 
abababaa è diterima 
aaaabab è diterima
aaabbaba è ditolak
Jawab :
i) δ (q0,abababaa) Þ δ (q0,bababaa) Þ δ (q1,ababaa) Þ 
δ (q0,babaa) Þ δ (q1,abaa) Þ δ (q0,baa) Þ δ (q1,aa) Þ 
δ (q0,a) Þ q0
Tracing berakhir di q0 (state AKHIR) Þ kalimat abababaa diterima
ii) δ (q0, aaaabab) Þδ (q0,aaabab) Þδ (q0,aabab) Þ
δ (q0,abab) Þ δ (q0,bab) Þ δ (q1,ab) Þ δ (q0,b) Þ q1

Tracing berakhir di q1 (state AKHIR) Þ kalimat aaaababa diterima

iii) δ (q0, aaabbaba) Þ δ (q0, aabbaba) Þ δ (q0, abbaba) Þ 
δ (q0, bbaba) Þ δ (q1,baba) Þ δ (q2,aba) Þ δ (q2,ba) Þ δ (q2,a) Þq2

Tracing berakhir di q2 (bukan state AKHIR) Þ kalimat aaabbaba ditolak

Kesimpulan : 
sebuah kalimat diterima oleh DFA di atas jika tracingnya berakhir di salah satu state AKHIR.
NFA :
Berikut ini sebuah contoh NFA (Q, ∑, δ, S, F). dimana :
Q = {q, q, q,q, q} δ diberikan dalam tabel berikut : 
∑= {a, b,c}δabc
S = qq{q, q}{q, q}{q, q}
F = {q}q{q, q}{q}{q}
q{q}{q, q}{q}
q{q}{q}{q, q}
qÆÆÆ
Ilustrasi graf untuk NFA adalah sebagai berikut :
a, b, c a, b, c 

a
q q



c b a
b
q q q
a, b, c a, b, c 
c
kalimat yang diterima NFA di atas : aa, bb, cc, aaa, abb, bcc, cbb
kalimat yang tidak diterima NFA di atas : a, b, c, ab, ba, ac, bc
Sebuah kalimat di terima NFA jika : 
· salah satu tracing-nya berakhir di state AKHIR, atau 
· himpunan state setelah membaca string tersebut mengandung state AKHIR


Contoh :
Telusurilah, apakah kalimat-kalimat berikut diterima NFA di atas : 
ab, abc, aabc, aabb
Jawab :
1. δ(q,ab) Þ δ(q,b) È δ(q ,b) Þ {q, q} È {q} = {q, q, q}

Himpunan state TIDAK mengandung state AKHIR Þ kalimat ab tidak diterima

2. δ(q,abc) Þ δ(q,bc) È δ(q ,bc) Þ { δ(q,c) È δ(q,c)}Èδ(q, c)
{{ q, q}È{ q}}È{ q} = {q, q, q,q}
Himpunan state TIDAK mengandung state AKHIR Þ kalimat abc tidak diterima
3. δ(q,aabc) Þ δ(q,abc) È δ(q ,abc)Þ{ δ(q,bc) È δ(q ,bc)} È 
δ (q ,bc) Þ{{ δ(q, c) È δ(q,c)} È δ(q, c)} È δ(q, c) Þ
{{{ q, q}È { q}} È {q}} È {q} = {q, q, q,q}
Himpunan state TIDAK mengandung state AKHIR Þ kalimat aabc tidak diterima
4. δ(q,aabb) Þ δ(q,abb) È δ(q ,abb) 
Þ { δ(q,bb) È δ(q ,bb)} È δ (q ,bb)
Þ{{ δ(q, b) È δ(q,b)} È δ(q, b)} È δ(q, b)
Þ{{{ q, q}È { q, q}} È {q}} È {q} = {q, q, q, q}
Himpunan state mengandung state AKHIR Þ kalimat aabb diterima

sumber: 

http://alhuaseem.blogspot.co.id/2013/12/teori-bahasa-dan-automata.html
https://id.wikipedia.org/wiki/Teori_otomata
http://serah-gua.blogspot.co.id/2012/10/pengenalan-bahasa-pemrograman.html
Share on Google Plus
    Blogger Comment

0 comments:

Post a Comment