Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasi kan masalah matematis agar dapat dipecahkan dengan operasi perhitungan
TUJUAN METODE NUMERIK
Sebelum komputer digunakan untuk penyelesaian komputasi, dilakukan dengan berbagai metode yang memiliki kendala-kendala. Metode yang digunakan antara lain:
- Metode Analitik, Solusi ini sangat berguna namun terbatas pada masalah sederhana. Sedangkan Masalah real yang komplek dan non linier tidak dapat diselesaikan.
- Metode Grafik, metode ini digunakan Sebagai pendekatan penyelesaian yang kompleks. Kendalanya bahwa metode ini Tidak akurat, sangat lama, dan banyak membutuhkan waktu.
- Kalkulator dan Slide Rules, Penyelesaian numerik secara manual. Cara ini cukup lama dan mungkin bisa terjadi kesalahan pemasukan data.
Penggunaan metode numerik diharapkan dapat mengatasi berbagai kelemahan-kelemahan metode yang ada sebelumnya. Dapat dipahami pula bawa pada umumnya permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika. Persamaan ini sulit diselesaikan dengan model analitik sehingga diperlukan penyelesaian pendekatan numerik. Dengan metode numerik, manusia terbebas dari hitung menghitung manual yang membosankan . Sehinggga waktu dapat lebih banyak digunakan untuk tujuan yang lebih kreatif, seperti penekanan pada formulasi problem atau interpretasi solusi dan tidak terjebak dalam rutinitas hitung menghitung
Manfaat Mempelajari Metode Numerik
Dengan mempelajari metode numerik diharapkan mahasiswa mampu:
- Mampu menangani sistem persamaan besar, Ketaklinieran dan geometri yang rumit, yang dalam masalah rekayasa tidak mungkin dipecahkan secara analitis.
- Mengetahui secara singkat dan jelas teori matematika yang mendasari paket program.
- Mampu merancang program sendiri sesuai permasalahan yang dihadapi pada masalah rekayasa.
- Metode numerik cocok untuk menggambarkan ketang guhan dan keterbatasan komputer dalam menangani masalah rekayasa yang tidak dapat ditangani secara analitis.
- Menangani galat (error) suatu nilai hampiran (aproksimasi) dari masalah rekayasa yang merupakan bagian dari paket program yang bersekala besar.
- Menyediakan sarana memperkuat pengertian matematika mahasisw. Karena salah satu kegunaannya adalah menyederhanakan matematika yang lebih tinggi menjadi operasi-operasi matematika yang mendasar
METODE ANALITIK VERSUS METODE NUMERIK
Metode analitik disebut juga metode sejati karena memberikan solusi sejati (exact solution) atau solusi yang sesungguhnya, yaitu solusi yang memiliki galat (error) sama dengan nol! Sayangnya, metode analitik hanya unggul untuk sejumlah persoalan yang terbatas, yaitu persoalan yang memiliki tafsiran geometri sederhana serta bermatra rendah. Padahal persoalan yang muncul dalam dunia nyata seringkali nirlanjar serta melibatkan bentuk dan proses yang rumit. Akibatnya nilai praktis penyelesaian metode analitik menjadi terbatas.
Bila metode analitik tidak dapat lagi diterapkan, maka solusi persoalan sebenarnya masih dapat dicari dengan menggunakan metode numerik. Metode numerik adalah teknik yang digunakan untuk memformulasikan persoalan matematik sehingga dapat dipecahkan dengan operasi perhitungan/aritmetika biasa (tambah, kurang, kali, dan bagi). Metode artinya cara, sedangkan numerik artinya angka. Jadi metode numerik secara harafiah berarti cara berhitung dengan menggunakan angka-angka.
Perbedaan utama antara metode numerik dengan metode analitik terletak pada dua hal. Pertama, solusi dengan menggunakan metode numerik selalu berbentuk angka. Bandingkan dengan metode analitik yang biasanya menghasilkan solusi dalam bentuk fungsi matematik yang selanjutnya fungsi mateamtik tersebut dapat
dievaluasi untuk menghasilkan nilai dalam bentuk angka.
dievaluasi untuk menghasilkan nilai dalam bentuk angka.
Kedua, dengan metode numerik, kita hanya memperoleh solusi yang menghampiri atau mendekati solusi sejati sehingga solusi numerik dinamakan juga solusi hampiran (approxomation) atau solusi pendekatan, namun solusi
hampiran dapat dibuat seteliti yang kita inginkan. Solusi hampiran jelas tidak tepat sama dengan solusi sejati, sehingga ada selisih antara keduanya. Selisih inilah yang disebut dengan galat (error).
hampiran dapat dibuat seteliti yang kita inginkan. Solusi hampiran jelas tidak tepat sama dengan solusi sejati, sehingga ada selisih antara keduanya. Selisih inilah yang disebut dengan galat (error).
Pemodelan Matematik dan Pemecahan Masalah Rekayasa
Pemodelan matematik diperlukan untuk membantu menyelesaikan permasalahan rekayasa (permasalahan riil). Gambaran tahapan pemrosesan masalah rekayasa yang secara analitis sulit diselesaikan selanjutnya dibawa ke bentuk model matematik dan diselesaikan secara matematis, aljabar atau statistik dan komputasi.
Apabila telah diperoleh penyelesaian matematik proses selanjutnya mengimplementasikan hasil matematis ke masalah rekayasa sbb:
Dalam menangani masalah rekayasa(masalah riil) perlu melakukan :
- Membawa permasalahan rekayasa kedalam teori matematika (model matematika)
- Model matematika yang diperoleh diselesaikan dengan cara matematika yaitu digunakan komputasi, statistika dan matematika yang disebut dengan alat pemecah masalah.
- Hasil dari pemecah masalah masih berupa nilai numeris atau grafik
- Hasil numeris yang diperoleh diimplementasikan kembali ke permasalah semula (masalah rekayasa) sehingga dapat dipublikasikan sesuai dengan permasalahan yang dimaksud.
Tahap-Tahap Memecahkan Persoalan Secara Numerik yang dilakukan dakam pemecahan persoalan dunia nyata dengan metode numerik, yaitu:
- Pendefinisian masalah (apa yang diketahui dan apa yang diminta).
- Pemodelan, Persoalan dunia nyata dimodelkan ke dalam persamaan matematika
- Penyederhanaan model, Model matematika yang dihasilkan dari tahap sebelumnya mungkin saja terlalu kompleks, yaitu memasukkan banyak peubah (variable) atau parameter. Semakin kompleks model matematikanya, semakin rumit penyelesaiannya. Mungkin beberapa andaian dibuat sehingga beberapa parameter dapat diabaikan. Model matematika yang diperoleh dari penyederhanaan menjadi lebih sederhana sehingga solusinya akan lebih mudah diperoleh.
- Formulasi numerik, Setelah model matematika yang sederhana diperoleh, tahap selanjutnya
adalah memformulasikannya secara numerik - Pemrograman, Tahap selanjutnya adalah menerjemahkan algoritma ke dalam program komputer
dengan menggunakan salah satu bahasa pemrograman yang dikuasai. - Operasional, Pada tahap ini, program komputer dijalankan dengan data uji coba sebelum data yang sesungguhnya.
- Evaluasi, Bila program sudah selesai dijalankan dengan data yang sesungguhnya, maka hasil yang diperoleh diinterpretasi. Interpretasi meliputi analisis hasil run dan membandingkannya dengan prinsip dasar dan hasil-hasil empirik untuk menaksir kualitas solusi numerik, dan keputusan untuk menjalankan kembali
program dengan untuk memperoleh hasil yang lebih baik.
Desain Algoritma
Algoritma adalah merupakan sederetan(sequence) langkah logika yang diperlukan untuk melakukan suatu tugas tertentu seperti pemecahan masalah.
Algoritma yang baik mempunyai sejumlah kriteria berikut :
- Setiap langkah harus determinestik.
- Proses harus berakir setelah sejumlah berhingga langkah.
- Hasil akhir tidak boleh tergantung kepada siapa yang menjalani algoritma tersebut.
- Suatu algoritma tidak boleh berakhir terbuka.
- Algoritma harus cukup umum untuk menangani keperluan apapun.
BAGAN ALIR ( FLOWCHART)
Bagan alir merupakan pernyataan visual atau grafis suatu algoritma. Bagan alir menggunakan deretan blok dan anak panah, yang masing-masing menyatakan operasi atau langkah tertentu dalam algoritma. Anak panah menyatakan urutan bagaimana seharusnya operasi dijalankan.
Manfaat bagan alir
- Dipakai untuk menyatakan dan mengkomunikasikan algoritma.
- Dapat membantu dalam perencanaan, menyelesaikan keruwetan.
- Mengkomunikasikan logika program.
- Merupakan wahana yang menarik untuk memvisualisasikan beberapa struktur yang mendasar yang diterapkan dalam pemrograman Komputer.
sumber:
https://fairuzelsaid.wordpress.com/2010/10/13/metode-numerik-01-pengantar-metode-numerik/
0 comments:
Post a Comment